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Abstract

A multigrid technique, based on a flexible-cycle additive-correction multigrid (FCAC-MG) scheme, is utilized to

design a high-performance solver for the unsteady incompressible Navier–Stokes (N–S) equations. The unsteady

incompressible N–S solver discussed here incorporates the fractional step method and finite volume discretization over

a staggered Cartesian grid. The current research indicates that the FCAC-MG acceleration technique is highly efficient,

reliable and robust, which makes it feasible for CPU-intensive computations, such as large eddy simulation (LES) and

direct numerical simulation (DNS). The high efficiency and the robustness of the solver are achieved through develop-

ing the FCAC-MG acceleration technique as well as flow-physics oriented solving strategies. The flow solver based on

the FCAC-MG technique is applied to both temporal and spatial turbulence simulations using both LES and DNS. The

residuals of the large-scale algebraic equation system are guaranteed to be continuously driven down to the level of the

computer machine round-off error on each time marching step, which warrants strong conservations of mass and

momentum satisfied over all the control volumes. In addition, the flow solver developed in the current research pos-

sesses the potential capability for handling complex geometry flows since the performance of the solver does not rely

on the use of special type of operations on the large-scale algebraic equation system, unlike the cyclic reduction algo-

rithm, but instead it is driven by a flow-physics oriented solving strategy. LES for flows in a square duct, a square annu-

lar duct and a confined square coaxial jet are performed to present the advantages of the FCAC-MG technique and the

flow-physics oriented solving strategy. The analyses of the simulation results for these three flow configurations provide

strong evidence that the flow solver based on FCAC-MG method is capable of capturing the major characteristics of

turbulence physics and correctly predicting the relevant turbulent flow phenomena.
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1. Introduction

Numerical simulation of the unsteady three-dimensional (3D) incompressible Navier–Stokes (N–S)

equations is an area of primary research interest since these equations govern many industrial flows, such

as low-speed aerodynamics and hydrodynamics. Research in this area has particularly intensified recently
owing to a desire to simulate realistic turbulence using large eddy simulation (LES) or direct numerical sim-

ulation (DNS). It is well known that a huge number of grid points are required to accurately resolve tur-

bulence structures and to obtain grid-independent solutions. Because of the critical demand of the grid

resolution in turbulence simulations, procedures for solving large linear algebraic systems of equations

are at the heart of large-scale computations. A flow solver developed for LES and DNS has to be highly

efficient, reliable and robust to solve the large-scale linear algebraic equation system.

So far, one of the most popular schemes for solving the unsteady incompressible N–S equations is the

fractional step method or projection method, first proposed by Chorin [1] and Temem [2] and later success-
fully applied to the simulation of unsteady flow problems by Kim and Moin [3]. As indicated in Kim and

Moin�s work, the application of the fractional-step method to the three-dimensional, incompressible, time-

dependent N–S equations results in four sets of linear algebraic equations, namely, the three discretized

momentum equations representing the momentum balance relations in three spatial directions and the pres-

sure Poisson equation that projects the velocity field, satisfying the momentum relations, into a divergence-

free field. Each of the momentum equations and the pressure Poisson equation can generally be written in a

discrete form: ac/c ¼
P

nbanb/nb þ bc, where / is the dependent variable of the three velocity components or

the pressure, subscript c represents the centre point and nb stands for the nearby points around the center.
As confirmed by a number of numerical experiments, such as [4,5], the properties of the discretized momen-

tum equations are significantly different from those of the pressure Poisson equations. Owing to the stabil-

ity requirement, the time step in the momentum equations has to be restricted to a small value so that the

Courant–Friedrichs–Lewy (CFL) number criterion can be satisfied, typically requiring CFL 6 1 if the

scheme is not fully implicit. This time-step restriction makes the matrices of the discretized momentum

equations highly diagonally dominant, i.e. ac �
P

nbanb. In addition to this, Dirichlet boundary conditions

are generally used for the momentum equations, which tends to enhance the diagonal dominance in the

momentum equation matrices. When compared to the discretized momentum equations, the pressure Pois-
son equations tend to be very stiff and ill-conditioned, i.e. ac ffi

P
nbanb. In addition, Neumann boundary

conditions are usually applied to the pressure Poisson equation, which is equivalent to specifying the first

derivative on the boundary, and tends not to enhance the diagonal dominance of the equations. Because of

these reasons, solving the pressure Poisson equation is usually the CPU bottle-neck for the unsteady incom-

pressible N–S equation system.

A variety of progresses and developments have been made in applying multigrid methods to efficiently

solve the Navier–Stokes equations since Brandt [6] first introduced the multigrid method to solve large sys-

tem of linear algebraic equations. Drikakis et al. [7] developed a nonlinear multigrid method for solving the
three-dimensional incompressible N–S equations in conjunction with the artificial compressibility formula-

tion. The method was based on the full multigrid (FMG)–full approximation storage (FAS) algorithm and

V-cycles were used in the multigrid iterations. Their testing results demonstrated that the nonlinear multi-

grid algorithm offered a significant acceleration of the computations in comparison with single-grid and

mesh-sequencing algorithms. Subsequently, Drikakis et al. [8] developed the adaptive-smoothing (AS) pro-

cedure to accelerate the multigrid computations based on the scheme presented in [7]. The principle of AS is

to exploit the non-uniform convergence behavior of the numerical solution during the iterations to reduce

the size of the computational domain and, subsequently, to reduce the total computing time. Numerical
experiments indicated that the AS procedure performed better for external flows when it is applied in all

grid levels of the multigrid method, while for internal flows the best performance is achieved when AS is

applied in the finest grid only. Other recent contributions in the field of multigrid methods include the
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research by Elman et al. [9] who developed a parallel block multilevel preconditioner for three-dimensional

incompressible N–S equations. The parallel preconditioner was based on a block factorization of the coef-

ficient matrix generated in an Oseen nonlinear iteration for the primitive variable formulation. This tech-

nique was applied to large-scale, parallel, three-dimensional transient and steady-state simulations

employing algebraic multigrid (AMG) methods.
In the current paper, a high-performance unsteady incompressible N–S solver is designed using both

conventional and modified tri-diagonal matrix algorithms (TDMAs) and a flexible-cycle [6] additive-correc-

tion multigrid [10] (FCAC-MG) technique. The unsteady incompressible N–S solver discussed here makes

use of the fractional step method [3] and finite volume discretization over a staggered Cartesian grid. The

major advantage of flexible cycle over the conventional V-cycle or W-cycle is that the computation on a

given grid level always have the opportunity to move up or to go down one grid level, depending on

whether the residual reduction on the current grid level is satisfied. This flexibility makes flexible-cycle

scheme more efficient in the corrections between the fine and coarse grids. On the other hand, additive-
correction scheme enables the integral conservation property being preserved on all multigrid levels. There-

fore, as a combination of the two solving strategies, the FCAC-MG acceleration technique is highly

efficient, reliable and robust, which makes it feasible for CPU-intensive computations, such as large eddy

simulation (LES) and direct numerical simulation (DNS). The high efficiency and the robustness of the sol-

ver are achieved through developing the FCAC-MG acceleration technique as well as flow-physics oriented

solving strategies. The flow solver based on the FCAC-MG technique is applied to both temporal and spa-

tial turbulence simulations using LES. The residuals of the large-scale algebraic equation system, typically

over a hundred thousand equations, are guaranteed to be continuously driven down to the level of the com-
puter machine round-off error on each time marching step, which warrants strong conservations of the

mass and momentum equations over all the control volumes. In addition, the flow solver developed in cur-

rent research possesses the potential capability for handling complex geometry flows since the performance

of the solver does not rely on the use of special type of operations on the large-scale linear algebraic equa-

tions system, unlike the cyclic reduction algorithm, but instead it is driven by a flow-physics oriented solv-

ing strategy. The solution of the unsteady incompressible N–S equations for flows in a square duct [5], a

square annular duct [11] and a confined square coaxial jet [12] are used as examples to demonstrate the

advantages of the FCAC-MG technique and the flow-physics oriented solving strategy. The analyses of
the simulation results for these three flow configurations provide strong evidence that the flow solver based

on FCAC-MG method is capable of capturing the major characteristics of turbulence physics and correctly

predicting the relevant turbulent flow phenomena.
2. Mathematical formulation and discretization

The numerical simulations of flow phenomena, using either direct numerical simulation (DNS), large
eddy simulation (LES) or a Reynolds-averaged Navier–Stokes (RANS) method, rely on the Navier–Stokes

(N–S) equations as the mathematical basis. In the current investigation, incompressible flows are consid-

ered and the fluid properties of density and viscosity are assumed to be constants. Therefore, the non-

dimensional form of the N–S equations can be written as
o�ui
oxi

¼ 0; ð1Þ

o�ui
ot

þ o�uj�ui
oxj

¼ � o�p
oxi

þ 1

Re
o

oxj
1þ mtð Þ o�ui

oxj
þ o�uj

oxi

� �� �
; ð2Þ
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where the indices i, j = 1, 2, 3 refer to the x, y and z directions, respectively; x is the streamwise direction,

and y and z are the transverse directions; t is the time; �ui is the spatially filtered velocity component; �p is the

spatially filtered pressure; Re is the Reynolds number; and mt is the subgrid scale eddy viscosity.

These governing equations are spatially discretized using a second-order finite volume formulation based

on a staggered grid system, which proved to be effective and practical in the DNS computation of square
duct flow by Gavrilakis [13]. As demonstrated by Kim and Moin [3], a common practice for the temporal

discretization of the unsteady incompressible N–S equations is to apply the second-order Adams–Bashforth

scheme for the convection terms and the second-order Adams–Moulton scheme for the diffusion terms. The

explicit treatment of the nonlinear terms eliminates the need for linearization, and the implicit treatment of

the diffusion terms eases the numerical stability restriction. The fractional step method in [3] is used to de-

couple the pressure and velocity and obtain the time-dependent pressure and the divergence-free velocity.

With this approach, the discretized governing equations can then be expressed as
~unþ1
i � uni
Dt

¼ 1

2
3Cn

i � Cn�1
i

� �
þ 1

2
~D
nþ1

i þ Dn
i

� �
; ð3Þ

unþ1
i � ~unþ1

i

Dt
¼ � o/nþ1

oxi
and

ounþ1
i

oxi
¼ 0; ð4Þ
where ~ui is the intermediate velocity component and unþ1
i is the final velocity field with superscript n + 1

representing the current time step, and
Ci ¼ � o

oxj
uiuj
� �

and Di ¼
1

Re
o

oxj
1þ mtð Þ oui

oxj

	 

.

The pressure, p, is linked with the pressure potential, /, through the following formulation:
p ¼ /� 1

2

Dt
Re

o

oxj
1þ mtð Þ o/

oxj

� �
.

These discretization schemes lead to algebraic equations that can be expressed in a unified form of formu-

lation for both the momentum and pressure Poisson equations:
apijk/
nþ1
ijk ¼ aeijk/

nþ1
iþ1jk þ awijk/

nþ1
i�1jk þ anijk/

nþ1
ijþ1k þ asijk/

nþ1
ij�1k þ atijk/

nþ1
ijkþ1 þ abijk/

nþ1
ijk�1 þ bijk; ð5Þ
where i, j, k denote the cell numbers in three spatial directions x, y, z, respectively.
3. Solver performance for the momentum equations

For the momentum equations, the central coefficient in the discretized equation (Eq. (5)) usually satisfies

apijk ¼ 1=Dt þ aeijk þ awijk þ anijk þ asijk þ atijk þ abijk. Since Dt has to be kept at a small value so that the CFL

number criterion can be satisfied for the stability requirement, the system of equations are highly diagonally

dominate. As illustrated in the following cases, the residual levels of the momentum equations can be driven

down to the level of the computer machine round-off error within a few iterations using a TDMA iterative

scheme, and no special convergence acceleration technique is required.
3.1. Design of a modified TDMA solver for the momentum equations

It is well known that the conventional TDMA or Thomas algorithm [14] directly solves the discretized

equations in one dimension and can be applied iteratively, in a line-by-line fashion, in the other two
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dimensions to solve multi-dimensional problems. When compared against direct solving methods, the

conventional TDMA is computationally inexpensive and has the advantage of using the minimum amount

of memory storage. So far, the conventional TDMA solver has been used for a wide variety of applications

in spatial flow simulations in which the discretized equations (Eq. (5)) can be reduced to a tri-diagonal form

in each of the three dimensions of space.
For temporal flow simulations, such as the flows inside a square duct and a square annular duct, the wall

boundary conditions are applied in the two cross-streamwise spatial directions y and z, shown in Figs. 1 and

2. This results in the conventional tri-diagonal form of equations along these two directions, as illustrated

by Eq. (6). These systems of equations can be solved by the procedures of forward elimination and back-

ward substitution, the details of which can be found in [15].
a0c2 a0r2 0 0 0 0 0 0

a0l3 a0c3 a0r3 0 0 0 0 0

0 a0l4 a0c4 a0r4 0 0 0 0

0 0 a0l5 a0c5 a0r5 0 0 0

0 0 0 a0l6 a0c6 a0r6 0 0

0 0 0 0 a0l7 a0c7 a0r7 0

0 0 0 0 0 a0l8 a0c8 a0r8
0 0 0 0 0 0 a0l9 a0c9

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

�

/2

/3

/4

/5

/6

/7

/8

/9

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

b02
b03
b04
b05
b06
b07
b08
b09

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

; ð6Þ
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Fig. 2. Schematic and geometric notation of the square annular duct.
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where the subscripts l, c, r represent the left, center and right coefficients, respectively, and the superscript

denotes the operation number with 0 indicating the original coefficients without performing any operation.

In the streamwise direction (the x direction indicated in Figs. 1 and 2), however, periodic velocity bound-

ary conditions are applied because of the homogeneous turbulence assumption. This implementation is

schematically illustrated in Fig. 3 for a staggered grid arrangement and can be mathematically expressed

as /ib ¼ /ie�1 and /ie ¼ /ibþ1. The nodal points are in the range of i = ib� � �ie with ib and ie being the peri-

odic boundary points. The number of equations is n = ie � ib � 1. Here, for instance, ib = 1 and ie = 10 are

used in Eq. (7). The implementation of these velocity boundary conditions results in a modified tri-diagonal
form of equations.
a0c2 a0r2 0 0 0 0 0 a0l2
a0l3 a0c3 a0r3 0 0 0 0 0

0 a0l4 a0c4 a0r4 0 0 0 0

0 0 a0l5 a0c5 a0r5 0 0 0

0 0 0 a0l6 a0c6 a0r6 0 0

0 0 0 0 a0l7 a0c7 a0r7 0

0 0 0 0 0 a0l8 a0c8 a0r8
a0r9 0 0 0 0 0 a0l9 a0c9

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

n�n

�

/2

/3

/4

/5

/6

/7

/8

/9

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

b02
b03
b04
b05
b06
b07
b08
b09

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

. ð7Þ
The key issue here is to find a solution procedure that can inverse the modified tri-diagonal matrix in Eq. (7)

at a cost of o(N) number of operations with N being the number of equations. With the sparseness structure

given by Eq. (7), the solution procedure for the system of equations is conceptually designed based on the

Gaussian elimination method, which consists of forward elimination and backward substitution similar to a

conventional tri-diagonal equation system. The detailed solving procedure of Eq. (7) is provided in Appen-

dix I of this paper.
3.2. Convergence performance for the momentum equations

3.2.1. Temporal LES of a square duct flow

The turbulent flow inside a square duct, as illustrated in Fig. 1, is a classic flow problem that has received

a great deal of coverage both experimentally and numerically. The LES results obtained using the current

code were validated in [5,11]. The focus in this section is directed at the solution schemes and the conver-

gence performance of the solver and some detailed computational results will be provided in Section 5. The

number of control volumes used in the LES was set at Nx · Ny · Nz = 128 · 32 · 32 in the three spatial

directions. Fig. 4 presents the typical convergence history for the momentum equation of U component.
The convergence behaviors for the other two components (V and W components) are similar to that of

U component presented in Fig. 4. The residual, or more precisely the total residual, hereafter is defined

as the sum of the residuals on individual control volumes, i.e. r ¼
PN

n¼1jac/c �
P

nbanb/nb þ bcj with N
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being the total number of control volumes. Since double digital precision is used in the current code, the

effective digital number that can be trusted in the simulation is about sixteen. Since the total number of

the control volumes is on the order of 105 (131,072), the solution reaches the level of the computer machine
round-off error when the total residual of the discretized equations is driven down by about 11 orders of

magnitude, i.e. o(10�11). The residual convergence history is highly dependent on the value of non-

dimensional time step, Dt, which directly affects the diagonal dominance of the matrices of the momentum

equations. Three typical time steps, namely Dt = 0.1, 0.01, 0.001, were chosen to demonstrate the conver-

gence performance. These three time steps correspond to CFL numbers of 155, 5.91 and 0.47. Because

of the stability requirement described in [4], the time step satisfying Dt 6 0.001 was used for the temporal

LES of square duct flow, which guaranteed a CFL number less than unity. The residual drop rate was fairly

high when CFL 6 1, usually o(106–7) for the first TDMA sweeping and o(104–5) for the second TDMA iter-
ation, and no special acceleration technique was required to obtain such a large residual drop rate. The

total CPU time required to solve the three momentum equations on one time step is at 2.11 s for

Dt = 0.001. This performance was measured on a Dell Precision 530 system with dual CPUs, which was

equipped with Pentium 4 Xeon Chips with a 2.2-GHz clock speed and a cache size of 512 KB. The machine

had 2.0 GB of RAM memory and a 400 MHz front side bus (FSB).
z (normal) u

vw

x (streamwise)

y (spanwise)

flow from square duct

flow from annular duct

Fig. 5. Schematic and geometric notation of the confined square coaxial jet.
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3.2.2. Temporal LES of a square annular duct flow

In [11], the LES method was first applied to the turbulent flow in a square annular duct, as depicted in

Fig. 2, which is an extension to the simple square duct problem depicted in Fig. 1. The significance of the

investigation lies not only in scientific curiosity about the turbulent structure evolution for the new flow

configuration, but also in establishing a turbulent database to extract the fully developed turbulent infor-
mation that can be used for the inlet boundary conditions to perform a spatial LES of a confined square

coaxial jet system [12], shown in Fig. 5. The detailed flow physics analyses for square annular duct can be

found in [11]. The attention here is paid to the convergence performance of the solver and some important

flow simulation results will be provided in Section 5. The grid resolution used in [11] was set at

Nx · Ny · Nz = 128 · 128 · 128 in the three spatial directions. Based on the argument used in the above sec-

tion, the solution reaches the level of the computer machine round-off error when the total residual of the

discretized equations are driven down by about ten orders of magnitude, i.e. o(10�10), since the computa-

tion was performed using double digital precision. A time step of Dt = 0.0005, which gives a maximum CFL

number of 0.821, was chosen to demonstrate the convergence performance. The residual convergence his-

tories for the three momentum equations are similar to the convergence behaviors presented in Fig. 4. The

total amount of CPU time required to obtain the solutions to the three momentum equations was 27.60 s

for one time step, and the total RAM memory requirement was 0.415 GB, which was benchmarked on the

Dell Precision 530 system described above. The modified TDMA solver can efficiently drive the residuals of

the momentum equations down to the level of the computer machine round-off error and no special accel-

eration technique is required.

3.2.3. Spatial LES of a confined square coaxial jet flow

The temporal LES computations of turbulent flows in a square duct and a square annular duct were in-

spired, to a large extent, by a motivation to understand the spatial evolution of turbulent flow in a confined

square coaxial jet, shown in Fig. 5. The objective of the spatial simulation of confined square coaxial jet flow

was to gain insight into the turbulent mixing phenomena, particularly when streamwise turbulent shear flow

and fully developed turbulence-driven secondary shear flow coexist in one system. Details of the flow physics

analyses can be found in [12]. The attention here is focused on the solver convergence performance and some

characteristic flow phenomena in confined square coaxial jet will be presented in Section 5. For a spatial sim-
ulation, the discretized momentum equations can be reduced to the conventional tri-diagonal form of the

equations in each of the three spatial directions. Therefore, the conventional TDMA solver can be applied

to solve the discretized momentum equations. The LES computation was conducted at a grid resolution of

Nx · Ny · Nz = 128 · 64 · 64, where x was the streamwise direction, and y and z were the two cross-stream-

wise directions. The non-dimensional time step was set to Dt = 0.0001 which gave a maximum CFL number

of 0.527. Since the number of control volumes was on the order of 105 and the computation was performed

using double digital precision, the solution reached the level of computer machine round-off error when the

total residual was driven down by about eleven orders of magnitude, i.e. o(10�11). The residual convergence
performance for the three momentum equations is similar to the convergence behavior presented in Fig. 4.

The conventional TDMA solver was capable of driving the residual down to the level of the computer
Table 1

Conventional and modified TDMA solver performance for the three benchmark cases

Grid size RAM memory (GB) CFL number Solver CPU time (s)

Square duct 128 · 32 · 32 0.033 0.470 Modified TDMA 2.11

Annular duct 128 · 128 · 128 0.415 0.821 Modified TDMA 27.60

Coaxial jet 128 · 64 · 64 0.186 0.527 Conventional TDMA 8.34
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machine round-off error within a couple of iterations. The total amount of CPU time required to obtain a

solution to the momentum equations was about 5.05 s for one time step advancing, which was measured on

the Dell Precision 530 system described above.

In summary, the computational parameters and performances of both the conventional and modified

TDMA solvers are listed in Table 1 for the three benchmark cases, in which the CPU time represents
the computing time per time step for unsteady calculations. The residual convergence, shown in Fig. 4, indi-

cates that the conventional and the modified TDMA solvers described in Section 3.1 are capable of effi-

ciently driving the residuals of the momentum equations down to the level of the computer machine

round-off error and that no special acceleration technique is required to achieve this objective.
4. Solver performance for the pressure Poisson equations

For the pressure Poisson equations, the central coefficient in Eq. (5) satisfies apijk ¼ aeijk þ awijk þ anijk
þasijk þ atijk þ abijk. Usually, Neumann boundary conditions are applied at the inlet/outlet and wall boundary

surfaces. Such a system of equations is very stiff and ill-conditioned. Usually the system involves at least one

and, in some cases, two singularity points, as demonstrated in the following section. Therefore, solving the

pressure Poisson equation system is the most difficult and CPU time intensive task. Some robust acceler-

ating techniques are necessary to drive the residuals down to a satisfactory level. In the current research,

the flexible-cycle algorithm in [6] is combined with the additive-correction multigrid technique in [10],

FCAC-MG, to accelerate the rate at which residuals of the pressure Poisson equations are driven down
to the level of the computer machine round-off error.

4.1. Design of a modified TDMA solver for the pressure Poisson equations

The periodic boundary conditions for three velocity components are imposed at the inlet and outlet sur-

faces of the square duct or square annular duct. The schematic implementation of the velocity periodic

boundary conditions is demonstrated in Fig. 3 using a one-dimensional staggered grid system. The deriva-

tion of the discretized pressure Poisson equation follows the same procedure illustrated in [3]. It should be
emphasized here that the sole purpose of the pressure Poisson equation is to project the intermediate veloc-

ity field onto a divergence-free velocity field and the derivation of the boundary conditions for the pressure

Poisson equation ought to strictly obey this principle. Assuming that the periodic velocity conditions are

imposed in the x direction and considering the points adjacent to one surface of the periodic velocity

boundary, the discretization of the continuity equation using a central difference scheme gives
1

dx
unþ1
2;j;k � unþ1

1;j;k

� �
þ 1

dy
vnþ1
2;jþ1;k � vnþ1

2;j;k

� �
þ 1

dz
wnþ1

2;j;kþ1 � wnþ1
2;j;k

� �
¼ 0; ð8Þ
where dx, dy, dz are the grid intervals of the corresponding grid points and superscript n + 1 represents the

current time layer.

Using the fractional step method and the periodic velocity conditions in the x direction, it is apparent

that
unþ1
2;j;k ¼ ~unþ1

2;j;k � Dt
o/
ox

	 

2;j;k

; unþ1
1;j;k ¼ unþ1

m�1;j;k ¼ ~unþ1
m�1;j;k � Dt

o/
ox

	 

m�1;j;k

; ð9Þ

vnþ1
2;jþ1;k ¼ ~v2;jþ1;k � Dt

o/
oy

	 

2;jþ1;k

; vnþ1
2;j;k ¼ ~v2;j;k � Dt

o/
oy

	 

2;j;k

; ð10Þ
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wnþ1
2;j;kþ1 ¼ ~w2;j;kþ1 � Dt

o/
oz

	 

2;j;kþ1

; wnþ1
2;j;k ¼ ~w2;j;k � Dt

o/
oz

	 

2;j;k

; ð11Þ
where i = 1 and i = m stand for the grid points of streamwise velocity on the two boundary surfaces in

streamwise direction, respectively.

Substituting Eqs. (9)–(11) into Eq. (8) and using central finite differences to approximate the derivatives

in Eqs. (9)–(11), it is not difficult to get the discretized pressure Poisson equations at points adjacent to the

i = 1 surface on which the periodic velocity boundaries are assigned:
ap2;j;k/2;j;k ¼ aw2;j;k /m�2;j;k � /m�1;j;k

� �
þ as2;j;k/2;j�1;k þ ab2;j;k/2;j;k�1ae2;j;k/3;j;k þ an2;j;k/2;jþ1;k

þ at2;j;k/2;j;kþ1 þ bp2;j;k; ð12Þ
where p is the center point and w, e, s, n, t, b represent the nodes surrounding point p. Following the same

procedure, the discretized pressure Poisson equations for the points adjacent to the i = m surface with the

periodic velocity boundaries can be derived as
apm�1;j;k/m�1;j;k ¼ awm�1;j;k/m�2;j;k þ asm�1;j;k/m�1;j�1;k þ abm�1;j;k/m�1;j;k�1 þ aem�1;j;k /2;j;k � /3;j;k

� �
þ anm�1;j;k/m�1;jþ1;k þ atm�1;j;k/m�1;j;kþ1 þ bpm�1;j;k. ð13Þ
The discretized pressure Poisson equations take a banded matrix form, as illustrated in Eq. (14), in three-

dimensional space with the periodic velocity boundary conditions in x or i direction and the wall boundary

conditions in the other two directions. Here, a Nx · Ny · Nz = 5 · 5 · 4 (including boundary points) banded

sparse matrix is chosen as an example to show the structure of the matrix, with ��� representing the regular

non-zero entries and �¯� represents the non-zero entries caused by the periodic velocity boundary conditions

in x direction.
� � � � �
� � � � �
� � � � � �

� � � � � �
� � � � �

� � � � �
� � � � �

� � � � �
� � � � � �

� � � � � �
� � � � �

� � � � �
� � � � �

� � � � �
� � � � � �

� � � � � �
� � � � �

� � � � �

2
6666666666666666666666666666666666666664

3
7777777777777777777777777777777777777775

/222

/223

/232

/233

/242

/243

/322

/323

/332

/333

/342

/343

/422

/423

/432

/433

/442

/443

2
6666666666666666666666666666666666666664

3
7777777777777777777777777777777777777775

¼

bp222
bp223
bp232
bp233
bp242
bp243
bp322
bp323
bp332
bp333
bp342
bp343
bp422
bp423
bp432
bp433
bp442
bp443

2
6666666666666666666666666666666666666664

3
7777777777777777777777777777777777777775

.

ð14Þ
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It is important to note that Eq. (14) can be solved only if the pressure potentials / are fixed at two points.

The periodic velocity boundary conditions and the continuity equations implicitly require that the follow-

ing two relations must hold:
XL�2

i¼2

XM�1

j¼2

XN�1

k¼2

bp�i�j�k ¼ 0 and
XL�1

i¼3

XM�1

j¼2

XN�1

k¼2

bp�i�j�k ¼ 0. ð15-1Þ
These can be equivalently expressed in integral form
tX1
q~V � d~s ¼ 0 and tX2

q~V � d~s ¼ 0; ð15-2Þ
where i = 1, 2, . . . , L and j = 1, 2, . . . , M, k = 1, 2, . . . , N are streamwise and cross-streamwise pressure

points, respectively, and i = 1, L, j = 1, M and k = 1, N are the boundary points in the three spatial direc-

tions; X1 and X2 are the boundary surfaces of the domains defined by the index limits in the two formula-

tions of Eq. (15-1), respectively; and q~V � d~s is the mass flux across the boundary surfaces of the domains.

Eqs. (15-1) or (15-2) then provide the compatibility for the two solvability conditions for Eq. (14).

To demonstrate the correctness of the above statement, consider the one-dimensional case of a staggered
four-point system with the periodic velocity boundary conditions, as presented in Fig. 3. Eq. (14) can be

reduced to the following linear equation system, assuming that the grid points are equally spaced:
1 �1 �1 1

�1 2 �1 0

0 �1 2 �1

1 �1 �1 1

2
6664

3
7775

/2

/3

/4

/5

2
6664

3
7775 ¼

b2
b3
b4
b5

2
6664

3
7775. ð16Þ
It is not difficult, by using Cramer�s rule, to see that Eq. (16) becomes positive-definite and solvable only
after the values of /2 and /5 are fixed. The physical interpretation for this ‘‘solvability condition’’ is that

the pressure fluctuation field needs two reference values in order to make the N–S equations with periodic

velocity boundary conditions determined. The numerical investigation indicates that the solvability condi-

tions guarantees that the discretized continuity equations are solvable and satisfied to computer round-off

precision; that is, it is divergence-free. It is conjectured that the two reference values are associated with the

longest wavelength of the pressure fluctuation field in the periodic direction. Therefore, the two reference

points ought to be chosen adjacent to the two end-surfaces where the periodic velocity boundary conditions

are imposed.
To solve Eq. (14) using the TDMA scheme, the equations in the y and z directions can be reduced to the

standard tri-diagonal form and the conventional TDMA approach can be applied. In the streamwise direc-

tion (the x direction in Figs. 1 and 2), however, the periodic velocity boundary conditions result in a mod-

ified tri-diagonal form of the equation as illustrated in Eq. (17). The nodal points are in the range of

i = ib� � �ie and the number of equations is n = ie � ib � 1. Here, for instance, ib = 1 and ie = 10 are used.
a0c2 a0r2 0 0 0 0 a0w22 a0w12
a0l3 a0c3 a0r3 0 0 0 0 0

0 a0l4 a0c4 a0r4 0 0 0 0

0 0 a0l5 a0c5 a0r5 0 0 0

0 0 0 a0l6 a0c6 a0r6 0 0

0 0 0 0 a0l7 a0c7 a0r7 0

0 0 0 0 0 a0l8 a0c8 a0r8
a0 �a0 0 0 0 0 a0 a0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

�

/2

/3

/4

/5

/6

/7

/8

/9

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

b02
b03
b04
b05
b06
b07
b08
b0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

; ð17Þ
r9 r9 l9 c9 n�n 9
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where a0w12 ¼ a0l2; a0w22 ¼ �a0l2, and the superscript of the coefficients represents the operation index, as dem-

onstrated in the matrices in Appendix II. Eq. (17) can be solved using forward elimination and backward

substitution following a similar procedure to that described in Section 3.1. The detailed solving procedure

of Eq. (17) is presented in Appendix II of this paper.

4.2. Development of a high-performance solver for the pressure Poisson equations

Most flow problems, such as the three flow cases considered in this paper, involve one dominate flow

direction, which in most cases is the streamwise direction. The authors� research experience has shown that

highly anisotropic coefficients are created for the dominating flow direction. Therefore, the pressure Pois-

son equations have to be solved directly in the streamwise direction using the solving procedure demon-

strated in Appendix II. The FCAC multigrid acceleration technique is applied in the other two

directions to solve the equations iteratively. The coupling between the streamwise direction and the
cross-streamwise direction is basically handled by using TDMA iterative scheme. Using this solving strat-

egy, the maximum residual convergence rate can be achieved and the residual of the pressure Poisson equa-

tion (three-dimensional residual) is guaranteed to be driven down to the level of the computer machine

round-off error. This solving method is known as a flow-physics oriented solving strategy.

The additive-correction multigrid scheme described in [10] is used for the two cross-streamwise directions

(y and z). The cell-centered two-level multigrid configuration is sketched in Fig. 6, in which the grid point

ð i j k Þ on the coarse level is surrounded by four grid points on the fine level in the y and z directions,

namely: ð i 2j� 2 2k � 2 Þ; ð i 2j� 2 2k � 1 Þ; ð i 2j� 1 2k � 2 Þ and ð i 2j� 1 2k � 1 Þ. The
variables on the coarse and fine levels are denoted by superscripts c and f, respectively, in the following

equations. Based on the idea introduced in [10], the following algebraic equation system can be used to

determine the correction for the fine grid level:
(i 2j-2 2k-1)

(i 2j-1 2k-2)(i 2j-2 2k-2)

(i 2j-1 2k-1)

(i j k)

z

Fig. 6. Schematic of a cell-centered two-level multigrid configuration.
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acp�i�j�k/
c
i�j�k ¼ ace�i�j�k/

c
iþ1�j�k þ acn�i�j�k/

c
i�jþ1�k þ act�i�j�k/

c
i�j�kþ1 þ acw�i�j�k/

c
i�1�j�k þ acs�i�j�k/

c
i�j�1�k þ acb�i�j�k/

c
i�j�k�1

þ bci�j�k; ð18Þ
where the coefficients on the coarse grid are calculated from the following restriction formulae:
ace�i�j�k ¼ afe�i�2j�2�2k�2 þ afe�i�2j�2�2k�1 þ afe�i�2j�1�2k�2 þ afe�i�2j�1�2k�1;

acw�i�j�k ¼ afw�i�2j�2�2k�2 þ afw�i�2j�2�2k�1 þ afw�i�2j�1�2k�2 þ afw�i�2j�1�2k�1;

acn�i�j�k ¼ afn�i�2j�1�2k�2 þ afn�i�2j�1�2k�1;

acs�i�j�k ¼ afs�i�2j�2�2k�2 þ afs�i�2j�2�2k�1;

act�i�j�k ¼ aft�i�2j�2�2k�1 þ aft�i�2j�1�2k�1;

acb�i�j�k ¼ afb�i�2j�2�2k�2 þ afb�i�2j�1�2k�2;

acp�i�j�k ¼ afp�i�2j�2�2k�2 þ afp�i�2j�1�2k�2 þ afp�i�2j�2�2k�1 þ afp�i�2j�1�2k�1 � afs�i�2j�1�2k�2 þ afs�i�2j�1�2k�1

� �
� afn�i�2j�2�2k�2 þ afn�i�2j�2�2k�1

� �
� afb�i�2j�2�2k�1 þ afb�i�2j�1�2k�1

� �
� aft�i�2j�2�2k�2 þ aft�i�2j�1�2k�2Þ

� �
;

bcp�i�j�k ¼ rfi�2j�2�2k�2 þ rfi�2j�2�2k�1 þ rfi�2j�1�2k�2 þ rfi�2j�1�2k�1.

ð19Þ

Eq. (19) provides the restriction operations that are used in the multigrid cycles. It is not difficult to see,

from Eq. (19), that for additive-correction method, there are no further decision to be made related to

the treatment of boundary conditions, the transfer of residuals, or the interpolation of the dependent var-

iable. The summation of the equations for all fine-grid control volumes, which lie within the same block of a
coarser grid, makes it equivalent to demanding the integral conservation over each coarse-grid control

volume.

The residuals on the fine grid level rfi�j�k are calculated from the current iterative values of /̂i�j�k using the

following relation:
rfi�j�k ¼ �afp�i�j�k/̂
f

i�j�k þ afe�i�j�k/̂
f

iþ1�j�k þ afn�i�j�k/̂
f

i�jþ1�k þ aft�i�j�k/̂
f

i�j�kþ1 þ afw�i�j�k/̂
f

i�1�j�k þ afs�i�j�k/̂
f

i�j�1�k

þ afb�i�j�k/̂
f

i�j�k�1 þ bfi�j�k. ð20Þ
A typical two-level multigrid iterative algorithm consists of restriction, relaxation on the coarse grid and

prolongation. After a number of relaxation sweeps, such as TDMA sweeps, on the fine grid level, the resid-
uals are calculated using Eq. (20) and are restricted to the coarse grid using Eq. (19). The restricted residuals

are then used as the source terms in Eq. (18) and relaxation sweeps are used to solve Eq. (18) on the coarse

level. The solutions to Eq. (18) are then utilized as the corrections to be prolongated back to the fine grid

using the following relations to update the current iterative solution of /̂
f

i�j�k:
/̂
f

i�2j�2�2k�2 ¼ /̂
f

i�2j�2�2k�2 þ /c
i�j�k; /̂

f

i�2j�2�2k�1 ¼ /̂
f

i�2j�2�2k�1 þ /c
i�j�k;

/̂
f

i�2j�1�2k�2 ¼ /̂
f

i�2j�1�2k�2 þ /c
i�j�k; /̂

f

i�2j�1�2k�1 ¼ /̂
f

i�2j�1�2k�1 þ /c
i�j�k.

ð21Þ
Eq. (21) provides the prolongation formulation in the FCAC multigrid calculation. Obviously, the restric-

tion (Eq. (19)) and prolongation (Eq. (21)) are second-order accuracy in space and no extra interpolations

are needed.

The flexible cycle in [6] is used to determine when the coarse-grid correction should be employed. The

FCAC-MG solution procedure contains two parts. The first part consists of a subroutine of TDMA

sweeps, which is controlled by the residual convergence rate. A flowchart of the TDMA solver is depicted
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No
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TDMA Solver
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Is decrat <

Calculate the total residual: ressum1

Fig. 7. Flowchart of the TDMA solver controlled by the residual convergence rate.
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in Fig. 7. If the total residual before iteration n on the current mesh is Rn ¼
P

i�j�kr
n
i�j�k and the residual after

iteration n is Rn + 1, then another TDMA sweeping iteration is performed if the residual convergence rate

satisfies Rn+1
6 f Æ Rn, where the value for f is usually set to 0.5 [10]. If the convergence rate is lower than

0.5, i.e. Rn+1/Rn > f, a correction on the coarser grid is required, which invokes the second part of the
FCAC-MG solution procedure.

A flowchart for the second part of the FCAC-MG solution procedure on grid level n is provided in

Fig. 8. The execution of the solving process is basically controlled by the residue reduction level criterion.

The initial total residual on the grid level n is calculated after starting the FCAC-MG algorithm. Follow-

ing that, the TDMA solver is invoked and the total residual after a number of TDMA iterations is ob-

tained, as shown in Fig. 7. Then, the program determines whether the residual reduction level has been

satisfied. If the residual reduction is less than a given criterion e1, the FCAC-MG algorithm on grid level

n is stopped and the calculation is moved to grid level n � 1. If the residual reduction level is greater than
the given criterion e1, the flow information, including the equation coefficients and residuals, will be re-

stricted to grid level n + 1 using Eq. (19) and the FCAC-MG process is started on grid level n + 1. The

process continues until the residual reduction level on this grid is reduced to the given criterion e1. Fol-
lowing that, the solution on grid level n + 1 is prolongated back to grid level n by Eq. (21) and the

TDMA solver on grid level n is invoked until the residual reduction level is satisfied. The flowchart

shown in Fig. 8 can be used recursively from the coarsest grid to the finest grid. The residual reduction

criterion, e1, is usually set to 0.1 to give an adequate convergence that produces an effective correction

for the TDMA solver on the current grid level. In order to guarantee that the residual on the finest grid
will be driven down to the level of machine round-off error, the restriction of the grid has to reach the
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Fig. 8. Flowchart of the FCAC multigrid solver controlled by the residual reduction level.

518 H. Xu et al. / Journal of Computational Physics 209 (2005) 504–540
coarsest grid level and the correction equations on the coarsest grid have to be solved directly. This find-

ing is consistent with the statement in [6] that, on the coarsest grid, an indefinite problem should be

solved directly, i.e., not by relaxation of any kind.

The advantage of flexible-cycle scheme is that the calculations on a given grid level always have the

opportunity to move up or to go down one grid level, depending on whether the residual reduction

on the current grid level is satisfied. In contrast, the conventional V-cycle or W-cycle regulates the mul-

tigrid cycle in a prescribed manner. Therefore, the flexible-cycle scheme can provide more efficient cor-

rections between the fine and coarse grids. On the other hand, Eqs. (18)–(21) indicate that the
additive-correction scheme establishes the equations on the coarser grid through agglomerating the

corresponding coefficients and source terms on the fine grid. As indicated in [10], this procedure reflects

the physically desirable property that the integral form of the conservation equation be satisfied over the

computational domain on all grid levels. Therefore, as a combination of these two schemes, the FCAC-

MG exhibits a reliable, efficient and robust performance when solving the large-scale system of pressure

Poisson equations.
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Fig. 9. FCAC-MG solver performance in the LES of a square duct flow.
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4.3. Convergence performance for the pressure Poisson equations

For the temporal LES of a square duct flow, illustrated in Fig. 1, the number of control volumes was set

to Nx · Ny · Nz = 128 · 32 · 32 in the three spatial directions. The multigrid scheme, as discussed in the

previous section, was implemented in the two cross-streamwise directions, which consisted of five grid levels
from the finest grid (128 · 32 · 32) to the coarsest grid (128 · 2 · 2). As depicted in the FCAC-MG flow-

chart in Fig. 8, one multigrid cycle started from the point where the program began to invoke the TDMA

solver. The cycle ended at the same point after the program went through the multigrid steps of restriction,

relaxation and prolongation and then returned to the TDMA solver. Fig. 9 shows the typical first nine mul-

tigrid cycles to demonstrate the performance of the FCAC-MG technique when solving the pressure Pois-

son equation. The multigrid behavior followed the typical V-cycle pattern for the first three cycles, which

brought the residual down from R = 1.789e+00 to R = 9.094e�03. From Cycle 4 to Cycle 6, the solver

exhibited mixed behavior between V-cycles and W-cycles that drove the residual down from
R = 9.094e�03 to R = 2.624e�04. As the multigrid solver progressed further from Cycle 7 to Cycle 9,

the coarser grid levels (grid – 3, 4, 5) were visited more and more frequently, indicating that more and more

low-frequency residuals were smoothed out and the solver was automatically adjusting itself to the smooth-

ing procedure on the coarser grid levels more frequently. It is interesting to note that Cycle 8 followed a

double W-cycle performance and Cycle 9 exhibited the so-called multi-W-cycle behavior. The first nine

multigrid cycles drove the total residual down from R = 1.789e+00 to R = 7.598e�06. The entire residual

convergence history with the FCAC-MG algorithm is depicted in Fig. 10, and the results are compared with

the solution procedure that used only the TDMA solver without a multigrid correction. The TDMA solver
with the FCAC-MG algorithm was capable of efficiently driving the residual down to the level of the com-

puter machine round-off error within 35 FCAC-MG cycles. The residual was driven down by about twelve

orders of magnitude from an initial value of 1.789e+00 to a converged value of 2.46e�12. The CPU time

was 24.56 s measured on the Dell Precision 530 system.
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Fig. 10. Residual convergence history of the pressure Poisson equation for the LES in a square duct flow. The CPU time were

measured on a Dell Precision 530 system with dual 2.2 GHz processors.
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In the temporal LES of a square annular duct flow, illustrated in Fig. 2, the number of control volumes

was set to Nx · Ny · Nz = 128 · 128 · 128 in the three spatial directions. The multigrid scheme was imple-

mented in the two cross-streamwise directions and consisted of six grid levels from the finest grid

(128 · 128 · 128) to the coarsest grid (128 · 4 · 4). Also, a grid dependence study was performed by using

a coarser grid with the number of control volumes setting to Nx · Ny · Nz = 128 · 64 · 64. The computa-
tion using the coarser grid consisted of five grid levels from the finest grid (128 · 64 · 64) to the coarsest
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Fig. 11. FCAC-MG solver performance in the LES of a square annular duct flow.
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grid (128 · 4 · 4). The results of the grid dependence study will be presented in Section 5.2. Fig. 11 gives the

first four multigrid cycles, which followed irregular W-cycle patterns. The first four multigrid cycles drove

the residue down from R = 6.539e�01 to R = 9.451e�04. As the multigrid iteration progressed and the res-

idues of the pressure Poisson equation were driven down, the multigrid cycle visited the coarser grid more

and more frequently. This observation indicates that, as the residuals were driven down, the solution pro-
cedure had to smooth out more and more low- frequency components in the residuals and therefore the

solver had to adjust itself to more and more coarser grid relaxations. The flexible-cycle iteration scheme,

in this regard, can meet the needs of the solver better compared to the conventional V-cycle and W-cycle.

Fig. 12 shows the residual convergence history for the TDMA solver with the FCAC-MG algorithm and

the TDMA solver without a multigrid acceleration. The TDMA solver with the FCAC-MG acceleration

could efficiently drive the residual down to the level of the computer machine round-off error within 25

FCAC-MG cycles. The residual was driven down about ten orders of magnitude from an initial value of

6.539e�01 to a converged value of 1.54e�11. The CPU time cost for these multigrid cycles was 242.94 s
on the Dell Precision 530 system.

In the spatial LES of a confined square coaxial jet, the number of control volumes was set to

Nx · Ny · Nz = 128 · 64 · 64 in the three spatial directions. The conventional TDMA solver was used

in three spatial directions and the FCAC-MG acceleration technique was applied in the two cross-

streamwise directions. The number of multigrid levels was set to 5, from the finest grid of Nx ·
Ny · Nz = 128 · 64 · 64 to the coarsest grid of Nx · Ny · Nz = 128 · 4 · 4. The performance of the

FCAC-MG algorithm in the first three cycles is shown in Fig. 13. The residual of the pressure Poisson

equation was driven down from an initial value of 19.47 to an end value of 0.2689. Similar to the per-
formance in the square annular duct flow, the multigrid path exhibited a double W-cycle pattern for the

first two multigrid cycles and then changed to an irregular multi-W-cycle pattern in the third multigrid

cycle. As the multigrid iteration progressed and the residual became smaller and smaller, the multigrid

cycles visited the coarser grid more frequently to smooth out the low frequency components in the resid-
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ual, indicating that the flexible-cycle scheme could automatically adjust itself to meet the needs of the

solver. Fig. 14 shows the residual convergence history, which indicated that the residual could be driven

down by about twelve orders of magnitude from an initial value of 1.947e+01 to a converged value of
1.93e�11. The CPU time cost for obtaining the converged solution at this residual level was 147.60 s on

the Dell Precision 530 system.

Table 2 summarizes the computational parameters and performance of the FCAC-MG solver for the

three benchmark cases, consisting of the square duct, square annular duct and confined square coaxial

jet flows. In Figs. 10, 12 and 14, the convergence performance of the residuals with the FCAC-MG accel-

eration were compared with the performance of the solver that used only the TDMA without multigrid.

The comparisons indicated that the conventional and modified TDMA solvers coupled with the FCAC-

MG acceleration are capable of efficiently driving the residuals of the pressure Poisson equations down
to the level of the computer machine round-off error. Compared with the CPU time cost for solving the

momentum equations, the CPU time spent solving pressure Poisson equation was usually 10–20 times

greater. Therefore, obtaining the solution to pressure Poisson equation was the bottle-neck when solving

the unsteady incompressible N–S equations. Here, the CPU time represents the computing time per time

step for unsteady calculations.
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Table 2

FCAC-MG Solver performance for the three benchmark cases

Grid size RAM memory (GB) CFL number CPU time (s)

Square duct 128 · 32 · 32 0.033 0.470 24.56

Annular duct 128 · 128 · 128 0.415 0.821 242.94

Coaxial jet 128 · 64 · 64 0.186 0.527 147.60
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5. Presentation of results and discussion

The previous sections were focused on the solving strategies and the convergence performance of the

FCAC-MG solver when applied to LES of turbulent flows in the square duct, square annular duct and

square confined coaxial jet. In the current section, the simulation results of these three cases will be pre-

sented to demonstrate the accuracy and correctness of the developed flow solver with regard to revealing

the relevant turbulence physics.

5.1. LES of turbulent flow in square duct

The turbulent flow inside a square duct, as illustrated in Fig. 1, is a classic flow problem that has received

a great deal of investigations both experimentally and numerically. The solver developed in current study is

validated by the DNS data from [13,16] as well as the experimental measurements from [17,18]. Fig. 15 pre-

sents the mean streamwise velocity along the wall-bisector of the square duct. The LES results from the

current investigation agree well with the DNS results at high Reynolds number and there is about 10% dis-

crepancy when compared with the DNS results at low Reynolds number. This discrepancy might be attrib-
uted to the use of the Smagorinsky Subgrid-Scale model in the current LES computation. To further

evaluate the quality of the current LES results, the �law of the wall� relation is used to check the mean
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streamwise velocity behavior in the near wall region. The present LES results, as shown in Fig. 16, are in

close agreement with those from [13].

In addition to the mean streamwise velocity, the mean turbulence-driven secondary flow and the turbu-
lence statistics, particularly the Reynolds stresses, are important quantities to judge the quality of the sim-

ulation. Fig. 17 presents the mean turbulence-driven secondary flow overlapped by the streamwise velocity

isovels in the square duct. As is well recognized by Nikuradse [19], the secondary flow consists of stream-

wise counter-rotating vortex pair around the corners of the square duct. The secondary flow distorts the

isovels towards the corners and increases the corner-bisector momentum transfer. The streamwise turbu-

lence intensity u0rms along wall-bisector of the square duct is presented in Fig. 18. The computed data are

compared with the experimental measurements from [17] in rectangular duct and from [18] in plane

channel. The DNS data from [13,16] are included. The LES results based on current solver tend to slightly
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over-predict u0rms (about 15%) in the near wall region. The peak value location from the current solver is

predicted at y+ = 13.5, whereas this location is at y+ = 13.0 in the DNS by Gavrilakis [13] and at

y+ = 15.0 in the DNS by Huser and Biringen [16]. Figs. 19 and 20 present, respectively, comparisons of

the turbulence intensities, v0rms and w0
rms, along wall-bisector line. The present LES results, while under-

predicting the magnitudes of v0rms and w0
rms by about 20% compared with DNS results from Gavrilakis

[13], well duplicate the DNS results in the near wall region and agree well with the lower Reynolds number
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experimental data. The distribution of turbulent shear stress �u0v0 along the wall-bisector is presented in

Fig. 21. The prediction from the current LES solver is in good agreement with the DNS results from Gavr-

ilakis [13]. Some noticeable difference can be found, by comparing the DNS prediction of Huser and Bir-

ingen [16] with the DNS results from [13], which is assumed to be attributed to the difference in Reynolds

number. The verification and validation on the case of square duct flow confirms that current LES solver

captures most of the turbulence physics in the flow, including turbulence-driven secondary flow and the rel-

evant turbulence statistics.
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5.2. LES of turbulent flow in square annular duct

The current LES solver is applied to a square annular duct flow as shown in Fig. 2, which is an extension

to a simple square duct in Fig. 1. To the best of our knowledge, there exists no previous LES or DNS inves-

tigation for flow in such configuration. This is a complex flow, compared with a square duct, because the
square annular duct contains both the concave 90� corners around the outer square duct and convex 90�
corners near the inner square duct. The turbulence structures, particularly the turbulence-driven secondary

flow structures, are expected to be more complex than those in square duct. Figs. 22(a) and (b) present the

mean streamwise velocity contours and the mean turbulence-driven secondary flow, respectively. The con-

tours of the mean streamwise velocity in Fig. 22(a) clearly identify a bulge away from the convex corner of

the inner square duct and a bulge towards the concave corner of the outer square duct. Following Nikur-

adse [19], the bulge away from the convex corner and the bulge towards the concave corner imply the exis-

tence of secondary flows pointing away from the convex corner and directed towards the concave corner,
respectively. The vector plot of the mean secondary flow in Fig. 22(b) confirms this conjecture, which exhib-

its the turbulence-driven secondary flow in the square annular duct as a chain of counter-rotating vortex

pairs symmetrically placed around the bisector of both concave and convex 90� corners. The formation

of the turbulence-driven secondary flow in a square annular duct can be linked to the same mechanisms

as those in a square duct, in both cases, the anisotropy of turbulence stresses is the driving force that

generates the secondary flows. The streamwise mean vorticity transport equation, Eq. (22), for statistically

stationary flow was used by Bradshaw [20] to identify the vorticity generation contributions from the

anisotropy distributions of Reynolds shear and normal stresses.
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Obviously, Eq. (22) indicates that the Reynolds stress distributions, particularly �v0w0; v02 and w02, have to

be accurately captured so that the patterns of turbulence-driven secondary flows can be predicted correctly.
Comparing Fig. 17 with Fig. 22(b), it can be evidently seen that the pattern of the secondary flow around

the concave corner of the outer duct resembles what exhibits near the concave corner region of square duct

flow. The resemblance of the vorticity structures suggests that the turbulent flow structures, including both

mean flow and Reynolds stresses, are strongly flow configuration dependent.

As mentioned in the Section 4.3, a grid dependence study was performed for the LES in the square annu-

lar duct flow using two grids resolutions, namely, grid I with Nx · Ny · Nz = 128 · 64 · 64 and grid II with

Nx · Ny · Nz = 128 · 128 · 128. The streamwise mean velocity U+ in the square annular duct is compared

to DNS results from a square duct in Figs. 23(a) and (b), which provide comparisons along both wall-
bisector and corner-bisector, with horizontal axes normalized by the wall-bisector distance and diagonal
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distance, respectively. Also, these figures provide the comparisons of the results based on coarser and re-

fined grids. The streamwise mean velocity using coarser grid exhibits an evident coarse-grid diffusion effect,

which tends to over-predict U+ and causes the velocity profile to protrude further in the region away from

the wall. The current LES results in square annular duct is performed at Res = 200 based on h in Fig. 2,
which is closer to Res = 150 in the DNS from [13] than Res = 300 in the DNS from [16]. Therefore, the

LES results using refined grid are more comparable to the U+ distributions from [13] in terms of both
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velocity magnitudes and the near-wall velocity gradients. The current grid-dependence study clearly indi-

cates that the results obtained using the FCAC-MG flow solver consistently converge to more accurate

solution as the computational grid becomes more and more refined.

To investigate the near-wall behavior of the streamwise mean velocity, logarithmic-law is applied to

check the U+ distribution in the near-wall region. Fig. 24 presents the U+ distributions near both inner
and outer walls of square annular duct, and they are compared to the DNS results from [13,16] as well

as the logarithmic law relation. In the region of y+ 6 10, the U+ distributions near both inner and outer

walls agree well with the DNS results and the linear diffusion relation. In the logarithmic region

(20 6 y+ 6 100), the U+ distribution near the outer wall is closer to the square duct DNS results and the

U+ near the inner wall is higher than the logarithmic law, which is conjectured to be attributed to the higher

turbulence production near the inner wall.

The �law of the wall� is originally used to characterize boundary layer types of flows. It would be of inter-

est to investigate the validity of this law in the vicinity of the two corners in the square annular duct,
namely, the convex 90� corner and the concave 90� corner. Fig. 24 provides the distributions of the stream-

wise mean velocity along the corner-bisectors of both convex and concave corners. These distributions are

compared with the traditional �law of the wall� and the DNS results along the corner-bisector of the concave

corner in the square duct. The consistency between the results from LES and DNS in Figs. 24, 25(a) and (b)

indicates that the streamwise velocity distribution in the present calculations is not affected by either the

implementation of the wall damping function or the subgrid scale (SGS) model, as long as the grid resolu-

tion is sufficient. It is evident that the near-wall behavior of the mean streamwise velocity does possess some

common characteristics, since the distributions near the concave corner-bisector are almost identical for
both square duct and square annular duct. The distributions are also linear in the logarithmic outer region.

Therefore, it is conjectured that some universal relations can be constructed, namely, U+ as a function of

d+, where d+ is the distance from the corners as indicated in Fig. 25. The concave corner case, by curve-

fitting the LES results in the region of 30 6 d+ 6 100 in Fig. 25(a), gives a linear logarithmic relation

U+(d+) = 2.5 lnd+ + 6.5 in the outer layer. Similarly, use of the Van Driest wall-damping form gives

UþðdþÞ ¼ dþð1� e�dþ=25Þ in the linear stress inner region, which fits the distribution of U+ in the region
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Fig. 25. Logarithm plot of the mean streamwise velocity near (a) the concave 90� and (b) the convex 90� corner-bisectors in square

annular duct.
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of 0 6 d+ 6 20 quite well for both DNS and LES results. For the convex corner, Fig. 25(b) indicates that

the current LES grid is somewhat sparse near the convex 90� corner. The grid points need to be distributed

well into the region of d+ 6 1.0 to resolve the flow near convex corner. Based on the current LES data, the
U+ � d+ dependence near the convex 90� corner can be curve-fit as Uþ ¼ dþð1þ e�dþ=25Þ3=2 and an outer

layer relation U+ = 2.5lnd+ + 9.0 is roughly in line with the computed results. The above analysis leads

to a conclusion respectively that, the concave 90� corner and the convex 90� corner impose a damping fac-

tor of 1� e�dþ=25 and an enhancement factor of ð1þ e�dþ=25Þ3=2 onto the turbulent sub-layer diffusion of the

streamwise mean velocity in near corner regions.
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The above analyses provide clear evidences that the flow solver based on the FCAC-MG method, ap-

plied to temporal simulation of turbulent flow in square annular duct, is capable of accurately capturing

the major characteristics of turbulence physics and correctly predicting the relevant turbulent flow

phenomena.

5.3. LES of turbulent flow in confined square coaxial jet

In the current investigation, the LES flow solver based on the FCAC-MG is applied to simulate the

turbulent flow in a confined square coaxial jet as presented in Fig. 5. The simulation involves two flow
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streams issuing from an inner square duct and a square annular duct into a confined square chamber.

The spatial evolution of the flow mixing between the two streams is predicted. One of the most chal-

lenging issues in Computational Fluid Dynamics (CFD) is the prescription of turbulent inflow and

outflow conditions in the non-homogeneous directions, as commented by Rogallo and Moin [21]

and Ciofalo [22]. The inflow condition appears to be more troublesome since the influence of the up-
stream conditions persists well downstream in most convection-dominated flow cases. A common prac-

tice to prescribe the turbulent inflow is to make use of simulation results from a relevant temporal

turbulent flow simulation, as seen in [23,24]. The investigation of the flows inside both square and

annular ducts, as presented in Sections 5.1 and 5.2, provides an important insight that demonstrates

the need for precise specification of the turbulent inflow conditions for the confined square coaxial jet.

Figs. 26(a) and (b) present the realistic mean streamwise shear, caused by the streamwise velocity dif-

ference, and the secondary shear, induced by the turbulence-driven secondary flows. The Reynolds

stresses on the inlet, as demonstrated in Fig. 27 for streamwise turbulent kinetic energy, present a
highly anisotropic and coherent type of distributions which could not be obtained if the time-depen-

dent inflow conditions were not copied from the temporal simulations in both square duct and annular

duct.

The distribution of streamwise vorticity on the wall-bisector plane is presented in Fig. 28. As seen in the

Figure, the instantaneous streamwise vorticity are characterized by the streaky structures both in the re-

gions of near-wall and near-shear layer. These streaky structures have a tendency to tilt with the leading

front in the higher velocity inner flow and trailing front in the lower velocity flow that emanates from

the annulus or from the wall.
The decay of the mean streamwise velocity along the centerline of the jet is presented in Fig. 29.

Here, Umax is the maximum value of the mean streamwise velocity on the jet centerline at the inlet.

Two linear decay regions can be found, namely linear decay region I in 0.0 < x/De < 3.6 and linearly

decay region II in 5.8 < x/De. Here, De is the equivalent diameter defined as the diameter of a round

slot with the same exit area as the square slot. By linear regression, see, for example, [25,26], the

two linear decay regions can be expressed as Umax/Ucl = Ku(x/De + Cu), where Ucl is the mean

streamwise velocity along the jet centerline, Ku is the mean streamwise velocity decay rate on the

jet centerline and Cu is the kinematic virtual origin of the jet. Linear regression gives Ku = 0.008,
Cu = 125 for linear decay region I and Ku = 0.045, Cu = 18.55 for linear decay region II. The decay

rate in region I is much lower than the one in region II, indicating that the major turbulent mixing

takes place in the region 5.8 < x/De. Fig. 29 clearly indicates that confining the jets causes the mean

centreline velocity to decay much slower than a free jet. The current prediction gives a centerline

velocity decay rate of 0.045 for the confined square jet, which is in good agreement with the exper-

imental decay rate at 0.046 from [26] for a confined plane jet. The parallel shift of the two curves,

(the difference in the regression constants), is quite probably attributable to the different flow con-

figurations used in the computation and the experiment. That is, Chua and Lua [26] used a 6:1 as-
pect ratio jet issuing into a 20:1 aspect ratio receiving chamber, whereas here we consider a square

configuration.

In summary, the FCAC-MG solver is applied to the spatial simulation of turbulent flow inside a

confined square coaxial jet. In the current simulation, the instantaneous temporal simulation results

on one of the cross-sections of the square and annular ducts are imposed onto the inlet plane of

the confined square coaxial jet. Such prescription of inflow conditions faithfully represents the turbulent

inlet conditions and makes it possible to realistically investigate two types of turbulent mixing mecha-

nisms that originate from the streamwise shear and turbulence-driven secondary shear. The flow anal-
yses, the details of which can be found in [12], indicate that the FCAC-MG solver is capable of

capturing the turbulent flow physics and accurately predict the turbulent flow phenomena in the

confined square coaxial jet.
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6. Conclusions

Modified TDMA solvers, for both the momentum equations and pressure Poisson equations, were

developed to perform temporal turbulence simulations of the flows in both a square duct and a square

annular duct. The solutions for the momentum equations are relatively easy to converge and both the con-
ventional and modified TDMA solvers are sufficient to drive the residual down to the level of the computer

machine round-off error within a few iterations.

When solving the incompressible unsteady N–S equations, it is well understood that the majority of the

CPU time is spent solving the pressure Poisson equation. Towards this end, a robust convergence acceler-

ation technique, such as the FCAC-MG method used here, is required to drive the residual down to a sat-

isfactory level.

A flexible-cycle additive-correction multigrid (FCAC-MG) scheme was utilized to design a high-

performance solver for the pressure Poisson equations. The FCAC-MG technique was applied to the
three-benchmark cases using a flow-physics oriented solving strategy, which in the present study involved

the application of the FCAC-MG technique to the two cross-streamwise directions and the use of a direct

solver in the streamwise direction. By making use of this solution strategy, the maximum residual conver-

gence rate could be achieved and the residual of the pressure Poisson equations were guaranteed to be

driven down to the level of the computer machine round-off errors.

The multigrid performance analysis indicated that the flexible-cycle scheme could provide more efficient

corrections between the fine and coarse grids. This scheme enabled the solver to adjust itself to provide

more relaxation on coarser grids as the residuals were driven down and more low-frequency components
of the residuals were smoothed out.

The analyses of the simulation results for the three flow configurations, namely, square duct, square

annular duct and confined square coaxial jet, indicate that the flow solver based on the FCAC-MG method

is capable of capturing the major characteristics of turbulence physics and correctly predicting the relevant

turbulent flow phenomena.
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Appendix I. Solution procedure of modified tri-diagonal equations (Eq. (7)) from momentum equation

For the forward elimination process, the following operations must be performed so that the element
entries become zero in the lower triangle of the matrix and the diagonal entries become unity. For

½ row i ¼ 1 . . . n� 2 �, the following three-step operation is required:

Step I: 1
aci
� ½ row i �,

Step II: ½ row iþ 1 � � alðiþ1Þ � ½ row i �,
Step III: ½ row n � � arn � ½ row i �,

which transforms Eq. (7) in the following form:
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1 an�2
r2 0 0 0 0 0 an�2

l2

0 1 an�2
r3 0 0 0 0 an�2

l3

0 0 1 an�2
r4 0 0 0 an�2

l4

0 0 0 1 an�2
r5 0 0 an�2

l5

0 0 0 0 1 an�2
r6 0 an�2

l6

0 0 0 0 0 1 an�2
r7 an�2

l7

0 0 0 0 0 0 an�2
c8 an�2

r8

0 0 0 0 0 0 an�2
l9 an�2

c9

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

n�n

�

/2

/3

/4

/5

/6

/7

/8

/9

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

bn�2
2

bn�2
3

bn�2
4

bn�2
5

bn�2
6

bn�2
7

bn�2
8

bn�2
9

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

; ðA1-1Þ
where the superscript n � 2 denotes the operation number to transform the equations.

Then, for ½ row i ¼ n� 1 �, the following two-step operation is required:

Step I: 1
aci
� ½ row i �,

Step II: ½ row iþ 1 � � alðiþ1Þ � ½ row i �,

which transforms Eq. (A1-1) in the following form:
1 an�1
r2 0 0 0 0 0 an�1

l2

0 1 an�1
r3 0 0 0 0 an�1

l3

0 0 1 an�1
r4 0 0 0 an�1

l4

0 0 0 1 an�1
r5 0 0 an�1

l5

0 0 0 0 1 an�1
r6 0 an�1

l6

0 0 0 0 0 1 an�1
r7 an�1

l7

0 0 0 0 0 0 1 an�1
r8

0 0 0 0 0 0 0 an�1
c9

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

n�n

�

/2

/3

/4

/5

/6

/7

/8

/9

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

bn�1
2

bn�1
3

bn�1
4

bn�1
5

bn�1
6

bn�1
7

bn�1
8

bn�1
9

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

. ðA1-2Þ
Finally, for ½ row i ¼ n �, the following one-step operation is required:

Step I: 1
aci
� ½ row i �,

which transforms Eq. (A1-2) into Eq. (A1-3):
1 anr2 0 0 0 0 0 anl2
0 1 anr3 0 0 0 0 anl3
0 0 1 anr4 0 0 0 anl4
0 0 0 1 anr5 0 0 anl5
0 0 0 0 1 anr6 0 anl6
0 0 0 0 0 1 anr7 anl7
0 0 0 0 0 0 1 anr8
0 0 0 0 0 0 0 1

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

n�n

�

/2

/3

/4

/5

/6

/7

/8

/9

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

bn2
bn3
bn4
bn5
bn6
bn7
bn8
bn9

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

. ðA1-3Þ
For the backward substitution process, the following three-step operations must be performed so that a

solution to the modified tri-diagonal equations can be derived:
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Step I: for ½ row i ¼ n �: /i ¼ bni ;
Step II: for ½ row i ¼ n� 1 �: /i ¼ bni � anri/n;

Step III: for ½ row i ¼ n� 2 . . . 1 �: /i ¼ bni � anli/n � anri/iþ1.

The above procedure clearly shows that a solution to the modified tri-diagonal equations can be obtained at
a cost of o(N) number of operations. Compared with the solution procedure for the conventional tri-

diagonal system, an extra column of storage ðanli i ¼ 1 . . . n� 1Þ and an extra set of operations are

required to solve the modified tri-diagonal system.
Appendix II. Solution procedure of modified tri-diagonal equations (Eq. (17)) from pressure Poisson equation

For the forward elimination process, the following operations must be performed so that the element
entries in the lower triangle of the matrix become zero and the diagonal entries become unity. For

½ row i ¼ 1 . . . n� 2 �, the following three-step operation is required:

Step I: 1
aci
� ½ row i �,

Step II: ½ row iþ 1 � � alðiþ1Þ � ½ row i �,
Step III: ½ row n � � arn � ½ row i �,

which transforms Eq. (17) as shown below.
For the operations using ½ row i ¼ 1 �:
1 a1r2 0 0 0 0 a1w22 a1w12

0 a1c3 a1r3 0 0 0 a1w23 a1w13

0 a1l4 a1c4 a1r4 0 0 0 0

0 0 a1l5 a1c5 a1r5 0 0 0

0 0 0 a1l6 a1c6 a1r6 0 0

0 0 0 0 a1l7 a1c7 a1r7 0

0 0 0 0 0 a1l8 a1c8 a1r8

0 a1r9 0 0 0 0 a1l9 a1c9

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

n�n

�

/2

/3

/4

/5

/6

/7

/8

/9

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

¼

b12

b13

b14

b15

b16

b17

b18

b19

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ðA2-1Þ
for the operations using ½ row i ¼ 2 . . . n� 3 �:
1 an�3
r2 0 0 0 0 an�3

w22 an�3
w12

0 1 an�3
r3 0 0 0 an�3

w23 an�3
w13

0 0 1 an�3
r4 0 0 an�3

w24 an�3
w14

0 0 0 1 an�3
r5 0 an�3

w25 an�3
w15

0 0 0 0 1 an�3
r6 an�3

w26 an�3
w16

0 0 0 0 0 an�3
c7 an�3

r7 an�3
w17

0 0 0 0 0 an�3
l8 an�3

c8 an�3
r8

0 0 0 0 0 an�3
r9 an�3

l9 an�3
c9

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

�

/2

/3

/4

/5

/6

/7

/8

/9

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

¼

bn�3
2

bn�3
3

bn�3
4

bn�3
5

bn�3
6

bn�3
7

bn�3
8

bn�3
9

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ðA2-2Þ
n�n
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for the operations using ½ row i ¼ n� 2 �:

1 an�2

r2 0 0 0 0 an�2
w22 an�2

w12

0 1 an�2
r3 0 0 0 an�2

w23 an�2
w13

0 0 1 an�2
r4 0 0 an�2

w24 an�2
w14

0 0 0 1 an�2
r5 0 an�2

w25 an�2
w15

0 0 0 0 1 an�2
r6 an�2

w26 an�2
w16

0 0 0 0 0 1 an�2
r7 an�2

w17

0 0 0 0 0 0 an�2
c8 an�2

r8

0 0 0 0 0 0 an�2
l9 an�2

c9

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

n�n

�

/2

/3

/4

/5

/6

/7

/8

/9

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

bn�2
2

bn�2
3

bn�2
4

bn�2
5

bn�2
6

bn�2
7

bn�2
8

bn�2
9

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

. ðA2-3Þ
For ½ row i ¼ n� 1 �, the following two-step operation is required:

Step I: 1
aci
� ½ row i �,

Step II: ½ row iþ 1 � � alðiþ1Þ � ½ row i �,

which transforms Eq. (A2-3) into the following form:
1 an�1
r2 0 0 0 0 an�1

w22 an�1
w12

0 1 an�1
r3 0 0 0 an�1

w23 an�1
w13

0 0 1 an�1
r4 0 0 an�1

w24 an�1
w14

0 0 0 1 an�1
r5 0 an�1

w25 an�1
w15

0 0 0 0 1 an�1
r6 an�1

w26 an�1
w16

0 0 0 0 0 1 an�1
r7 an�1

w17

0 0 0 0 0 0 1 an�1
r8

0 0 0 0 0 0 0 an�1
c9

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

n�n

�

/2

/3

/4

/5

/6

/7

/8

/9

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

bn�1
2

bn�1
3

bn�1
4

bn�1
5

bn�1
6

bn�1
7

bn�1
8

bn�1
9

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

. ðA2-4Þ
For ½ row i ¼ n �, a one-step operation is required:

Step I: 1
aci
� ½ row i �,

which results in
1 anr2 0 0 0 0 anw22 anw12
0 1 anr3 0 0 0 anw23 anw13
0 0 1 anr4 0 0 anw24 anw14
0 0 0 1 anr5 0 anw25 anw15
0 0 0 0 1 anr6 anw26 anw16
0 0 0 0 0 1 anr7 anw17
0 0 0 0 0 0 1 anr8
0 0 0 0 0 0 0 1

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

n�n

�

/2

/3

/4

/5

/6

/7

/8

/9

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

bn2
bn3
bn4
bn5
bn6
bn7
bn8
bn9

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

. ðA2-5Þ
For the backward substitution process, the following four-step operations are required to obtain a solution

to the modified tri-diagonal equations:

Step I: for ½ row i ¼ n �: /i ¼ bni ;
Step II: for ½ row i ¼ n� 1 �: /i ¼ bni � anri/n;
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Step III: for ½ row i ¼ n� 2 �: /i ¼ bni � anri/iþ1 � anw1i/n;

Step IV: for ½ row i ¼ n� 3 . . . 1 �: /i ¼ bni � anri/iþ1 � anw1i/n � anw2i/n�1.

By adopting the above solving procedure, the solution to the modified tri-diagonal equations can be

obtained at a cost of o(N) number of operations. When compared against the solution procedure for the
conventional tri-diagonal system, two extra columns of storage ðanw1i i ¼ 1 . . . n� 2Þ; ðanw2i i ¼
1 . . . n� 3Þ and two extra sets of operations are required to solve the modified tri-diagonal system.
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